首页> 外文OA文献 >Topological defects govern crack front motion and facet formation on broken surfaces
【2h】

Topological defects govern crack front motion and facet formation on broken surfaces

机译:拓扑缺陷控制裂纹前方运动和小平面形成   破碎的表面

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Patterns on broken surfaces are well-known from everyday experience, butsurprisingly, how and why they form are very much open questions. Well-definedfacets are commonly observed1-4 along fracture surfaces which are created byslow tensile cracks. As facets appear in amorphous materials5-7, theirformation does not reflect microscopic order. Fracture mechanics, however,predict that slow crack fronts should be straight, creating mirror-likesurfaces8-13. In contrast, facet-forming fronts propagate simultaneously withindifferent planes separated by steps. It is therefore unclear why steps arestable, what determines their path and how they couple to crack front dynamics.Here we show, by integrating real-time imaging of propagating crack fronts withsurface measurements, that steps are topological defects of crack fronts; crackfront separation into discontinuous overlapping segments provides the conditionfor step stability. Steps drift at a constant angle to the local frontpropagation direction and the increased local dissipation due to step formationcouples to the long-range deformation of the surrounding crack fronts. Slowcrack front dynamics are enslaved to changes in step heights and positions.These observations show how 3D topology couples to 2D fracture dynamics toprovide a fundamental picture of how patterned surfaces are generated.
机译:破碎表面上的图案从日常经验中是众所周知的,但是令人惊讶的是,它们如何形成以及为什么形成是非常开放的问题。通常沿着断裂表面观察到定义明确的面1-4,断裂面是由缓慢的拉伸裂纹产生的。由于小面出现在无定形材料5-7中,其形成不能反映微观顺序。但是,断裂力学预测缓慢的裂纹前沿应该是笔直的,从而产生类似镜面的表面8-13。相反,形成刻面的锋面在台阶分隔的不同平面内同时传播。因此,尚不清楚为什么台阶稳定,是什么决定了台阶的路径以及它们如何与裂纹前沿动力学耦合。在这里,我们通过将传播的裂纹前沿的实时成像与表面测量相结合,证明了台阶是裂纹前沿的拓扑缺陷。裂纹前沿分离成不连续的重叠段为阶梯稳定性提供了条件。台阶相对于局部前传播方向以恒定角度漂移,并且由于台阶形成而导致的增加的局部耗散耦合到周围裂纹前沿的长期变形。慢速裂纹的前部动力学受制于台阶高度和位置的变化,这些观察结果表明3D拓扑如何与2D断裂动力学耦合,从而提供了如何生成图案化表面的基本信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号